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Abstract

®
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The recorded field of view of any digital imaging system is limited by the physical size of the
sensor array. While it is a common knowledge that the image field exists beyond the boundaries
of the sensor array, there is generally no way to measure it unless the imaging system (or the
object) is translated laterally. We propose a single-shot computational imaging system with a
multiple-point impulse response that is able to effectively increase the physical size of the

sensor array. The image recorded on the array sensor is not visually meaningful but can be used
to recover the image field beyond the native sensor boundary via a sparsity based iterative
algorithm, as we demonstrate in this work. The system concept can be considered analogous to
structured illumination imaging; however, the structuring is performed here in the Fourier space
in order to recover an extended image field. The effective increase in the sensor size depends on
the extent of the impulses in the engineered multiple point impulse response. The achievable
sensor size extension is therefore limited by the resolution of the phase mask that is introduced
in the Fourier plane of the imaging system. We present a simulation study where the individual
impulses in the designed impulse response extend over the original array sensor size, thereby
doubling the effective sensor dimensions (a four times increase in the number of pixels) without
affecting the image resolution. Both binary and gray-scale objects have been considered in our
study in order to illustrate that the quality of the extended field of view image depends on the
sparsity of the object under consideration. The concept of extended field of view computational

imaging as presented here may find a number of practical applications.

Keywords: computational imaging, multiple-point impulse response, extended field of view,

coded aperture, random convolution, PSF engineering,
compressive imaging

(Some figures may appear in colour only in the online journal)

1. Introduction

Digital imaging devices such as cameras (including cell phone
cameras), microscopes and telescopes commonly employ a
pixelated array sensor such as a charge-coupled device (CCD)/
complementary metal oxide semiconductor chip to capture
image information. Most current sensor arrays have a physical
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size in the range of 5—7 mm, which ultimately limits the field of
view (FOV) observed by the corresponding systems in a single
exposure record. Intuitively, one modality that can be used to
increase the FOV beyond the sensor size is to record multiple
images via scanning of a single array sensor or using multiple
sensors [1]. A larger FOV than what is recorded on the sensor
in one exposure can then be achieved by stitching or fus-
ing the multiple image records. One commonly encountered
example of this is the panorama photography mode now avail-
able in most smart phones. Another example is the use of slide

© 2021 IOP Publishing Ltd  Printed in the UK
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(a)

scanners for digital pathology, where large tissue samples are
scanned with a microscopy imaging system to enable whole
slide imaging [2, 3]. However, this scanning and stitching
process is tedious and can sometimes lead to registration arte-
facts due to possible issues associated with illumination and/or
variable de-focus in recorded images. To overcome the FOV
limitation posed by the lens in the microscopy system, a lens-
less imaging system for widefield microscopy was suggested
in [4]. In any imaging system the resolution and FOV are
coupled, and to overcome this limitation the concept of Fourier
ptychography [5] allows one to obtain more resolvable pixel in
the same FOV by using multiple angled illumination followed
by a Gerchberg—Saxton like algorithm. A 0.5 gigapixel ima-
ging system that uses a closed circuit television lens to relay
an object onto a flatbed scanner has been reported [6]; this
utilizes the scanning mechanism of a linear CCD array to get
an image with a large FOV. A microlens array based system
for large FOV imaging has also been studied [7]. Designing a
computational imaging system that would increase the effect-
ive physical area of the native imaging sensor in a single shot
can therefore offer several practical advantages in the opera-
tion of such scanning based imaging systems.

For imaging systems using spatially incoherent illumina-
tion, the forward model for the measured image intensity may
be expressed as

Low(%,Y) = Iin(x,y) * p(x,y) + n(x,y), )
where I, and [;, represent the output and input object intens-
ities, respectively, p(x,y) is the incoherent point spread func-
tion (PSF) of the system and n(x, y) is the noise in the meas-
urement, which we assume to be additive. The symbol * in
the above relation represents the convolution operation. It is
well known that p(x,y) = |h(x,y)|?, where h(x,y) represents
the coherent impulse response of the system. An illustration
to explain the FOV limitation posed by the limited sensor size
is shown in figure 1. The PSF of a traditional imaging sys-
tem is a single point impulse response (SPIR), approximated
here as a delta impulse at the centre of image field as shown in
figure 1(a). In a real system, the physical extent of the PSF

P
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Figure 1. Pictorial representation of image recording using a conventional imaging system: (a) impulse response approximated as delta
impulse. (b) Full FOV image with the binary text object. (c) Image field captured by the native sensor with size shown by the yellow dotted
square. A limited FOV of the object in (b) is thus recorded on sensor.

(©)

is decided by the diffraction-limited spot size and is there-
fore inversely proportional to the Fourier plane aperture of the
system. The whole image field is shown in figure 1(b); how-
ever, due to the limited detector size the image recorded by
the system is shown in figure 1(c) where the dotted yellow
square represents the active area of the detector. For example,
it is a common observation while using a microscope that the
image field seen through the viewfinder is larger than what
is recorded on the digital camera attached to the microscope.
This tells us that the image distribution often exists beyond the
physical sensor boundaries, which is missed in the recording
process. When the system PSF is SPIR in figure 1(a), there
is essentially a pixel to pixel association between the object
and the recorded image. As a result, the information exist-
ing outside the physical array sensor cannot be recorded. In
this work we are interested in a computational imaging sys-
tem configuration in which by suitably modifying the system
PSF the information outside the physical extent of the detector
can be brought into the detected intensity pattern Ioy(x,y).
This may lead to a visually unrecognizable image record; how-
ever, an appropriate reconstruction algorithm applied to these
data may lead to a system with an extended FOV. We wish to
emphasize here that we are not simply adding more pixels to
the existing image but wish to add pixels beyond the sensor
boundary while maintaining the same spatial resolution. Our
idea as proposed in this work has a close connection to struc-
tural illumination microscopy (SIM) [8]. SIM has become
an important computational imaging modality which enables
super-resolution imaging beyond the diffraction limit. This is
achieved by using (typically) sinusoidal structured illumina-
tion in the object plane (figure 2(a)) which allows one to access
spatial frequencies beyond the Fourier plane aperture of the
microscope system, as illustrated in figure 2(b). Analogously,
as seen in figure 2(c), it is conceivable that a structured phase
pattern in the Fourier plane of the imaging system (which cor-
responds to some PSF in the coordinate domain) will allow
us to access information beyond the physical dimension of the
sensor (figure 2(d)). In this sense the system discussed in this
paper may be considered as a conjugate domain analogue of
a SIM system. The simplest PSF for accessing information
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Figure 2. Analogy of the proposed extended FOV system with structure illumination microscopy (SIM). (a) In SIM, sinusoidal illumination
is used in the spatial domain. (b) The extension of Fourier space occurs by shifting the spectrum from the centre (red circle), as shown by
the small blue circles. By using multiple illumination directions, it is possible to fill the complete Fourier space within the dotted circle and
hence extend the system resolution beyond the native diffraction limit. (c) Fourier plane phase mask in the proposed system. (d) The small
red squares in the center represents the native array detector size of the traditional imaging system. Implementation of phase masking at the
Fourier plane aperture of the system shifts the image FOV as shown by the blue squares. The proposed phase mask design corresponding to
a multiple point impulse response fills the space shown by the dotted rectangle and therefore increases the effective sensor size.

Figure 3. (a) Proposed PSF configuration with multiple point
impulse response approximated as delta impulses and distributed in
the central half FOV of the object field. (b) Image scrambled by the
proposed PSF as recorded by a detector of limited size.

beyond the physical sensor boundary is the multiple point
impulse response (MPIR), as illustrated in figure 3(a). It may
be noted that the PSF now consists of multiple delta func-
tions arranged so as to bring the missing information from
outside the sensor boundary into the recorded data. When this
PSF is used to image the object in figure 1(b), the resultant

image becomes scrambled and captured by the limited-sized
sensor as shown in figure 3(b). Although not clear visually,
the information about the letters ‘P’ and ‘E’, which was
completely missing in the truncated image in figure 1(c), has
now been brought into the detector area in a scrambled form.
In order to recover the full FOV image from this detected
data, let us assume that the sensor size is m X n pixels and the
full FOV that we wish to reconstruct is of size M x N with
M > m and N > n. The image reconstruction problem there-
fore involves MN unknown pixel values that are to be estim-
ated from mn (possibly noisy) measurements. Based on the
well-established theory of compressive imaging, this problem
should be solvable if the resultant MN pixel image of the object
of interest has sparse representation in some suitable transform
basis. Imaging using MPIR was first suggested in [9] in the
context of controlled blurring of images for encryption pur-
poses. In order to increase the space—bandwidth product of the
system, a random projection strategy was suggested in [10].
A number of random convolution based schemes have also
been studied [11-13] for computational super-resolution ima-
ging. While our focus in this work is on spatial incoherent illu-
mination, the case of increase in the space—bandwidth product
of the system via coded diffraction based phase retrieval has
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also been demonstrated [14, 15]. In these studies, the gain in
space—bandwidth product of the system is due to the improved
resolution of the captured image. Spatially encoded PSFs in a
multiplexed imaging system have been demonstrated in [16]
to capture a wide FOV for spectral imaging of sparse objects.
More recently, ideas on random convolution were discussed
in [17], where a half masked detector was used to image in the
masked area. While this work has some similarities to the main
ideas proposed here, the quality of the reconstructed image
in the masked detector region seems to be somewhat unsatis-
factory. Moreover, when a large number of impulse response
points are used in the setup, the detected pattern has a reduced
contrast to noise ratio, and may lead to difficulties in extended
FOV image reconstruction. In our work, we utilize a concept
analogous to SIM for the distribution of impulse functions,
which then reduces the number of impulses required. Based on
this analogy with SIM imaging, we believe that a high degree
of randomness in the location of the multiple delta functions
in the impulse response is not necessary. As our simulations
suggest, a small number of impulses (15-20) placed appro-
priately, as shown in figure 3(a), with only the intention of
covering a larger FOV seem to be sufficient for obtaining an
extended FOV with high image quality.

This paper is organized as follows. In section 2 we will
provide details on the design of the multiple point PSF and
additionally suggest methodologies that may be used to real-
ize this PSF experimentally. We also provide details of a sparse
iterative reconstruction algorithm that can achieve a good qual-
ity extended FOV image. A description of the algorithm is
followed in section 3 by illustrations of extended FOV image
reconstruction for a binary text object and a gray-scale object.
In section 4, we show the performance of the proposed meth-
odology with different levels of noise and object sparsity.
Finally in section 5, we provide concluding remarks and future
directions.

2. Extended FOV image reconstruction from
scrambled and truncated data

2.1. Problem overview

In order to explain the feasibility of an extended FOV system,
in this section we assume that the PSF of the proposed imaging
system is in the idealized form and consists of a collection of
delta impulses at locations (xx,yx) as given by

N
pxy) =" ad(x —xi,y — y). )

k=1

Here qy, is the weighting factor for the delta impulses, which is
determined by the normalization of the PSF. In our example,
all values of a; are equal to the normalized constant. For the
simulation, we use a 256 x 256 computational window and
assume that the native detector has an active area over the cent-
ral 128 x 128 pixels. The delta impulses in figure 3(a) are all
placed within the detector extent. The finite size of the Four-
ier plane aperture in a real imaging system will imply that the
individual delta spikes will have a finite extent equal to the

diffraction limit. These multiple point impulse responses can
be realized by using an appropriate computer-generated holo-
gram (CGH) or phase mask corresponding to the PSF shown
in figure 3(a) in the Fourier plane of the standard 4f system
shown in figure 4. The design of the phase mask or appropri-
ate CGH for multi-spot patterns can be realized using iterat-
ive phase retrieval algorithms [18-21]. The coherent impulse
response of the system is proportional to the Fourier transform
of the phase mask in the Fourier plane aperture of the imaging
system. The phase mask in the Fourier plane may be displayed
on a spatial light modulator (SLM) or fabricated on a transpar-
ent glass substrate using a lithographic process. The physical
coordinates (u, v) of the SLM correspond to spatial frequencies

(fiofy), where

f=5p H=3r 3)

A’ \f

Here X and f are the illumination wavelength and focal length
of the lens used in the 4f system, respectively. The impulse
function at position (xp,yo) can be considered to result from
of a plane wave expli27m(f.xo +fyy0)] in the phase mask,
which has to be represented in a sampled form on the SLM
pixels. The extent to which (xg,yo) can be placed away from
the optical axis of the system thus depends on the Nyquist
sampling requirements for the SLM pixels. If the physical
pixel size in the SLM plane is Au = Av, the spatial frequency
sampling interval is given by

Au Av

v M= 4)
For a plane wave represented as W(f,,f,) = exp[i2m(f.xo0 + fyy0))
the Nyquist sampling criterion along the u-axis requires that

Af, =

27xg Afy < . 5)

This leads to the condition

(VS
20, 2Au

X < (6)
Thus the maximum value of x, (or the extent of impulses) that
could be possible with the 4f configuration is a function of
wavelength, the focal length of the lens and the pixel pitch of
the SLM. For a nominal tabletop 4f system (as in figure 4) with
a lens with focal length f =5 cm, SLM pixel size of 6.4 um
and wavelength A = 650 nm, the largest allowed x is approx-
imately equal to 2.5 mm (note that xy can be either positive
or negative). For a nominal sensor size of 5 mm, this amounts
to doubling the effective sensor size if an effective reconstruc-
tion algorithm can be designed. The relation in equation (6)
allows us to design the required extent of the multiple impulse
response relative to a detector size by the use of suitable hard-
ware components.

As explained above, our aim is to select a small number
of delta impulses that allow us to cover the desired FOV bey-
ond the physical sensor size. As explained in [9], a uniform
periodic arrangement of the delta impulses may result in lines
of zeros in the optical transfer function (OTF) of the system
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Figure 4. Schematic experimental setup of extended FOV imaging with a phase mask at the Fourier plane. The phase mask scrambles the
object field recorded by the detector shown by a yellow square in the image plane. The larger blank square in the image plane is the

expected total FOV.

and may eventually lead to artefacts in the recovered extended
FOV image. As shown in figure 3(a), we therefore arrange the
delta impulses symmetrically around the central delta impulse
and then dither their positions randomly by 2-5 pixels. The
nature of the data recorded on the truncated sensor is shown in
figure 3(b). For completeness we state here that after the con-
volution with the multiple point impulse response, a Poisson
noise equivalent to 103 photons/pixel on an average has been
added in the data.

2.2. Description of the extended FOV algorithm

In order to reconstruct the extended FOV image [, (x,y) we
aim to solve an optimization problem which may be nominally
formulated as minimization of a cost function of the form

C(ln) =C1+aCy =||S® [low — p * In]||* + a H(Ly).  (7)

In the above cost function, the first term C| represents the L2-
norm squared data consistency error. The symbol S denotes the
truncated detector support and the symbol ® denotes that this
error is computed only over S. The second term Cj is a regu-
larization term for which we use the modified Huber functions
which may be defined as

[ 14 VIl ]

H(lw) = )
all pixels

The Huber function contains a parameter §. This parameter
controls the local behaviour of the sparsity function. For a
large value of gradient (i.e. at the edges) the Huber function
behaves like the total variation (TV) penalty which has an
edge-preserving property. For a small gradient magnitude the
Huber function is quadratic in gradient magnitude and acts
like a smoothing penalty. Therefore it is suitable for the recon-
struction of images having both edge and grey scale features.
In the iterative algorithm when the Huber penalty is used, the
parameter § may be made proportional to the median of the
image gradient magnitude at all pixels of the guess solution at
any iteration. In this way the penalty function automatically
decides whether a given pixel has edge-like features or gray-
scale and operates on it in an adaptive manner.

The parameter « in equation (7) decides the weight between
the two terms of the cost function. Determining an appropriate

|VIin|?
52

®)

value of o usually requires empirical tuning. In order to avoid
this somewhat tedious tuning process, we follow an alternating
minimization scheme inspired by the adaptive steepest descent
projection onto convex sets (ASD-POCS) algorithm, which
has been demonstrated successfully in the context of computed
tomography image reconstruction [22] as well as in digital
holography [23-25]. The main idea in ASD-POCS is that, in
one iteration, the change in the solution due to reduction of C;
is made approximately equal to the change in the solution due
to reduction of C, in an adaptive manner. This procedure is
known to adjust the solution automatically (depending on the
nature of the data), without the requirement to have any free
parameter such as « in the algorithm. The details of the itera-
tion are explained below.

Given the truncated data over m X n pixels, one may initiate
the algorithm with an image consisting of M x N pixels over
which we wish to recover the image with the truncated data
in the centre. In our work we initiate the algorithm with the
truncated data itself with zero padding to make the total guess
image size equal to M x N. The following steps are carried out
in the (k 4 1)th iteration:

(a) Compute the intermediate solution by progressing the
guess image in the direction of the negative gradient of
the cost function C; as

Ji

e =19 =1 (V/C1) o )
Here, the step size ¢ is calculated using the standard back-
tracking line search method [26] to make sure that the
numerical value of C| is reduced. The functional gradient
(V,C}) is computed as

(ViC1) = —2p_ *[SO (low —p *1)], (10)

where p_(x,y) =p(—x,—y) is the PSF inverted along
both x and y dimensions. Some extra constraints such as
positivity can be incorporated after this step.

(b) The change in the solution due to this error reduction step
is given by the distance

dy = ||1fy) — 1

int (11

|2

The notation ||..||, represents the L, norm.
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(c) In order to impose the Huber penalty, the intermediate
solution is updated in small steps in the direction of —V;C,
with a step size proportional to d;. This process may be
described as

k+1) kD) ViCy

L =L —Bd |—=—— . 12
int int Bd, |: | ‘V[C2| |2 ] 121.(,1,0 (12)
Here the initial guess for the sub-iteration Ii(:t’lzo) is equal

to the intermediate solution Ii(r]fl). The parameter S is in
(0, 1) and we use an initial value of 3 =0.2. A fixed num-
ber L of sub-iterations of this form were performed (L = 20
in our case) in each outer iteration. For completeness we
mention that the functional gradient V;C, corresponding

to the Huber penalty function may be evaluated as [27]

1 Vi
ViC = =5V |
1+ ]

13)

(d) The change in the intermediate solution due to the C, sub-
iterations above is computed as

dy = |10 — 1Yo,

int (14)

(e) Our aim is to achieve d; = d, eventually and, as a result,
if d| < ds, the parameter 3 is reduced by a fixed fraction
B — 0.958 for use in the next outer iteration. We wish to
remark here that the algorithm is not very sensitive to the
initial value of the parameter 3 and so its initial choice is
not critical to the eventual solution.

(f) Atthis point, the (k + 1)th iteration is complete and we set

JRHD _ hL=1)

in int

5)

This alternating minimization procedure does not require
a critical parameter such as « and in addition has an interest-
ing feature that as the iterations progress the angle between
the two directions —V;C; and —V,C, starts to increase and
goes to a large obtuse value. This suggests an equilibrium
between the two terms of the cost function and the iterative
process may be stopped when this angle becomes sufficiently
large (e.g. greater than 140°) or when change in the solu-
tion is less than a pre-determined threshold value. In order to
accelerate the iterative process, we used the Nestrov acceler-
ated gradient descent [28, 29] with backtracking line search
for the reduction of the error term C. This involves comput-
ing the functional gradient —V;C; at the intermediate point
[I0) 4 4 (I — [%=1)] instead of at I® as in simple gradient
descent. The coefficient ~; for the added momentum term is
changed as per the sequence [29]

Mg = (1= mesn)me (16)
(1 — )

= L (17)
771%‘1'771{-&-1

The initial value of 7, for k=0 is selected as 1 in the above
sequence.

3. Extended FOV reconstruction results

In order to demonstrate the proposed concept of extended
FOV imaging, simulation was carried out on two types of test
object. One is a binary object which is sparse in the gradi-
ent domain and the other one is the standard ‘cameraman’
image with both edge-like and gray-scale features (and hence
less sparse). Both the images contain 256 x 256 pixels. Mul-
tiple point impulse responses are distributed in the central
128 x 128 pixel computational window. Since in a practical
system the impulse functions have a finite extent depending
on the diffraction limit, we present a simulation study that
includes both cases, one with the ideal delta impulses and
another with the Gaussian impulse, as shown in figure 6(g).
The finite size of Gaussian impulses arises due to finite size of
the SLM, which may be used as a phase mask in the Fourier
plane. For a square area of a SLM of dimensions d X d act-
ing as a Fourier plane aperture, the incoherent PSF is propor-
tional to a distribution sinc?( f\—‘;) sinc?( ))\—‘)lf) at the location of the
individual impulse. Here A and f represent the wavelength of
illumination and the focal length of the lens in a 4f setup (see
figure 4). Using the same parameters as before in section 2.1
(A=0650 nm, f=5 cm) and assuming d =1 cm, it may be
observed that the full width at half maximum (FWHM) of the
sinc?(...) function is equal to a pixel width assuming an array
sensor with square pixels of size 3 pm. For numerical illustra-
tion we approximate the sinc?(...) PSF with a Gaussian with
the same FWHM as shown in figure 6(g).

To generate the data for simulations, the original object
was convolved with the proposed PSF followed by trunca-
tion of the blurred image to the limited detector size. Fur-
ther, we added Poisson noise in the blurred image correspond-
ing a mean light level of 10° photons/pixel in the truncated
detector pixels. Both illustrations used 1000 iterations of the
algorithm, as explained in section 2.2. The algorithm was writ-
ten in MATLAB/GNU Octave. Figures 5(a) and (b) show the
reconstructed image with the proposed iterative approach with
delta impulses and Gaussian impulses in the PSF definition,
respectively. Figure 5(c) shows the relative mean squared error
(RMSE) plot. The solid line represents the error when the PSF
with delta impulses is used and the dotted line corresponds to
the PSF with Gaussian impulses. The RMSE is calculated with
respect to the ground truth test object as

RMSE — ||Igr0undtrulh - Iin| ‘2

(18)
| |Iground truth' |2

Isround—wruth and Iy represent the pixel values corresponding to
the original and restored images, respectively. As expected, the
RMSE value with the Gaussian impulse is somewhat higher
than that with the delta impulses, since the Gaussian impulse
leads to some additional blurring in the data. Other metrics
for comparing the quality of the reconstructed image, such as
the peak signal to noise ratio (PSNR) and the structure sim-
ilarity index measure (SSIM), were also employed and their
numerical values for various cases studied here are provided in
table 1. These values suggest high quality recovery for the bin-
ary object with the same resolution as that of the ground truth
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Figure 5. (a), (b) Reconstructed images from the scramble data in figure 3(b). (a) Recovered image using a PSF with delta impulses.

(b) Recovered image using a PSF with Gaussian impulses. In both cases the information beyond the native sensor size, i.e. the letters ‘P’
and ‘E’, gets recovered completely. (c) Relative mean square error (RMSE) as a function of iteration numbers with the solid blue line and
dotted red line representing the error (on log-scale) when a PSF with delta impulses and Gaussian impulses is used, respectively.

Table 1. The error performance of the reconstructed images with two different levels of sparsity as measured by the Tamura coefficient

(TC) of the gradient magnitude image corresponding to the test objects.

Delta impulses

With Gaussian impulses

TC RMSE PSNR SSIM RMSE PSNR SSIM
Binary object 1.84 8.6 x 107* 41.6 0.95 1.2x 1073 40.0 0.92
Cameraman
128 x 128 sensor size 1.34 29 %1072 30.2 0.84 40x% 1072 29.1 0.82
Cameraman
150 x 150 sensor size 1.34 1.6 x 1072 329 0.88 2.1x 1072 32.0 0.87

image (figure 1(b)). Moreover, reconstruction of the image,
and hence the effective increase in sensor size, is a function
of the sparsity of the object. To be more specific, we use the
Tamura coefficient (TC), a measure of sparsity, in this work to
evaluate the sparsity of the test object [30]. The TC evaluates
the gradient sparsity of the image [, (x,y) and is defined as

19)

Here o and (G) represent the standard deviation and mean
of the gradient magnitude image G = |VI,|, respectively. A
higher numerical value of TC suggests higher gradient sparsity
of the test image. More details on the accuracy of image recov-
ery as a function of image sparsity will be provided in the next
section. Thus, the gray scale object such as a cameraman is
less sparse than the binary object. Therefore, it is expected that
the number of samples required for the reconstruction is lar-
ger in this case. We reconstruct the cameraman image with
two sensor sizes: (a) 128 x 128 pixels, which corresponds to
sampling gain of 4, and (b) 150 x 150 pixels, which corres-
ponds to an approximate sampling gain of a factor of about 3.
The two truncated detector sizes are shown by dotted yellow
and white squares in figure 6(b). Figure 6(c) shows the data
collected at the sensor using the delta impulses as the PSF, with
the dotted yellow square showing a sensor size of 128 x 128
pixels and the white dotted square showing a sensor size of
150 x 150 pixels. The reconstructed images with two differ-
ent sensor sizes are shown in figures 6(d) and (e), respectively.

The reconstructed images now show an extended FOV beyond
the truncated detector boundaries. However, the image qual-
ity with 150 x 150 pixels is better than with 128 x 128 pixels,
as expected. The same numerical experiment is repeated with
the Gaussian impulses in figure 6(f). The individual Gaussian
impulse is shown in the inset figure 6(g). Visual inspection
of the recovered extended FOV images in figures 6(i) and (j)
are observed to be similar to those with a PSF of ideal delta
impulses. However, the quality of the image gets degraded, as
confirmed by the numerical values of the metrics in table 1
and the error plots in figure 6(k). The blue and red curves in
this plot represent the cases corresponding to the 128 x 128
and 150 x 150 pixel sensors, respectively. The solid and dot-
ted curves correspond to the PSF with ideal delta impulses
and Gaussian impulses, respectively. Along with the extended
FOV these results also suggest another possibility for increas-
ing the frame rate of existing sensors. For example, a mul-
tiple point impulse response may be used to code information
captured by an existing sensor into a smaller area. A smaller
number of pixels may then be read out, thereby improving the
frame rate of the existing sensor without losing a number of
pixels in the final image.

Some remarks regarding difference in quality of the exten-
ded FOV image recovery for the binary text object and the
cameraman object are in order here. We wish to highlight again
that our aim in this work is to recover an MN pixel image
from its mn noisy measurements (with M >m and N > n).
For a given sampling gain of MN/mn the quality of recovery
is expected to be better for objects that have higher sparsity



J. Opt. 23 (2021) 085703

R Malik et al

Relative Mean Square Error

128x128 sensor with delta impulse
150x150 sensor with delta impulse
== =-128x128 sensor with gaussian impulse
== =-150x150 sensor with gaussian impulse

400 600 800
No. of Iterations

1000

Figure 6. Extended FOV simulation results for a grey-scale object. (a) Ground truth image with 256 x 256 pixels. (b) Image captured with
the native sensor of size 128 x 128 pixels is shown by a dotted yellow square and that with a detector size of 150 x 150 pixels is shown by a
white dotted square. The information outside the respective sensor sizes is lost in the traditional measurement process. (¢) Captured data
with the proposed PSF, with yellow and white dotted squares representing the respective sensor sizes. (d), (i) Restored images with the

128 x 128 pixel sensor using a PSF with delta and Gaussian impulses, respectively. (e), (j) Restored images with the 150 x 150 pixel sensor
using a PSF with delta and Gaussian impulses, respectively, (f) PSF with Gaussian impulses with the zoomed in version of the individual
impulse shown in (g). (k) The relative mean square error plot for the two sensor sizes is shown by the solid lines with blue and red curves,
corresponding to the 128 x 128 pixel sensor and 150 x 150 pixel sensor, respectively, when a PSF with delta impulses is used. The
respective error plots for the Gaussian impulses are shown by the dotted lines.

in a suitable transform basis. Among the two objects used in
our illustrations, the binary text object has higher degree of
sparsity (TC = 1.84) and therefore a near perfect recovery of
the extended FOV is possible. On the other hand the camera-
man object is not as sparse (TC = 1.34) since it has a number of
sharp and grey-scale features as well as textured regions. As
a result the quality of recovery as measured by the paramet-
ers in table 1 is comparatively lower for the same sampling
gain. This observation is in line with what is expected from
the compressive sensing formalism [31] and is important for
implementing practical extended FOV imaging systems. Note
that, here, TC is used as a measure of sparsity as it is simple

to evaluate. Other measures of sparsity may be used [32] if
needed.

4. Effect of noise and object sparsity on extended
FOV reconstruction

In this section, we examine the effect of noise in the trun-
cated detector data and the sparsity of the object under con-
sideration on the proposed reconstruction methodology. In
order to understand the effect of noise, we simulated the trun-
cated detector data (as illustrated in figure 3(b)) with Poisson
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Figure 7. RMSE performance of the restored images after 1000 iterations. (a) RMSE as a function of different SNR levels (in dB).
(b) RMSE as a function of different sparsity level for the test object as measured by the Tamura coefficient.

Figure 8. Cameraman image with increase in the level of sparsity. (a)-(c) Ground truth images with median filters of sizes 3 X 3,7 x 7 and
13 x 13 with TC values of 1.46,1.61 and 1.7, respectively. (d)—(f) Restored images after 1000 iterations. For the reconstruction of images,
the extent of MPIR and the sensor size lie within the central 128 x 128 pixels window.

noise corresponding to an average light level in the range
5 x 10° photons/pixel. A total of 14 light levels in this range
were used so that the signal to noise ratio (SNR) in dB ranged
from 15 to 28. The RMSE of the reconstructed extended FOV
image with respect to the ground truth as a function of detec-
tion SNR (dB) is plotted in figure 7(a). The error bars in this
plot represent the standard deviation in RMSE over five inde-
pendent noise realizations at each of the SNR levels. As expec-
ted, the RMSE is seen to fall off with increasing detection
SNR. Analysis of the behaviour of the reconstructions with
varying levels of object sparsity is a more involved problem.
For a given level of sparsity, the quality of extended FOV

reconstruction may depend on the distribution of features in
the test image that are within and outside the truncated detector
region. In order to keep the analysis simple, we artificially con-
structed images with increasing levels of sparsity by using a
median filter of varying size applied to the camera image. As
the size of the filter increases, finer textural details in the image
are washed out, which then increases the image sparsity. The
sparsity of these median filtered images was once again meas-
ured by means of the TC corresponding to their gradient mag-
nitude image as described in the previous section. The RMSE
for the six reconstructed test images is plotted in figure 7(b),
corresponding to median filter of sizes varying from 3 x 3 to
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13 x 13, respectively. In the previous section we used two test
objects—the binary text PHASE object and the grayscale cam-
era object. In terms of the TC sparsity measure, these two cases
lie beyond the range of sparsity values covered by the six test
objects studied here. Three of these test objects correspond to
median filters of sizes (3 x 3),(7 x 7) and (13 x 13) and are
shown in figures 8(a)—(c) along with the extended FOV recon-
structed image in figures 8(d)—(f), respectively. The sensor
size used for the reconstruction of these images consists of
128 x 128 pixels and the PSF of the system was the ideal delta
impulses. This corresponds to a sampling gain of 4. A noise
level corresponding to 25 dB SNR was used in all six cases. In
general we observe that the extended FOV reconstruction per-
formance improves with increasing sparsity. From the RMSE
plot in figure 7(b), we further observe that the RMSE of the
restored images may also depend on the nature of the test
object and does not have a simple relationship with a single
sparsity measure such as TC (or probably any other choice of
sparsity measure [32]). For example, the RMSE for the bin-
ary PHASE object with the highest sparsity does not neces-
sarily fit the trend of RMSE performance for various camera-
man test objects (generated by median filtering). The RMSE
for the PHASE object is seen to be much lower than for the six
cameraman test objects, thus indicating that the feature distri-
bution in the test object also plays an important role. The topic
of performance of the compressive sensing algorithms with
object sparsity was studied earlier in [33] for Gaussian random
measurements. However, in the context of imaging problems
such as those discussed here that use sparse reconstructions,
this topic needs more investigation that is not within the scope
of the present article.

5. Conclusion

We proposed a computational optical imaging system for
increasing the FOV beyond the physical extent of the image

sensor. Our method involves engineering the PSF of the tra-
ditional imaging system such that it consists of a number
of impulses separated from each other spatially. The design
of the proposed PSF is analogous to structured illumination
imaging. The structured pattern in the Fourier plane of the
imaging system allows us to extend the FOV in the detector
space. Our numerical experiments indicate effective extended
FOV image recovery with a two-fold larger FOV without the
loss of image resolution for realistic experimental situations.
The extent to which the effective size of the sensor may be
increased depends on the smallest realizable feature size in
the Fourier plane phase mask, and the number and distribu-
tion of impulses in the engineered PSF. The sparsity of the
object under consideration is also important, and the quality
of the recovered image for a given sampling gain is expec-
ted to be better for sparser objects. The exact sampling gain
that will provide a satisfactory extended FOV reconstruction
will, however, depend on the nature of the object or specific
application, as seen in our illustrations. The concept described
here may also be utilized to improve the frame rate of exist-
ing image sensors without the loss of pixel number in the
recovered image. The proposed extended FOV system concept
is likely to find multiple applications which we will explore
with experiments in future.
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Appendix A. Algorithm pseudocode

Pseudo code for extended FOV

1: Inputs: /,,, (data image with zero padding),  (step size
parameter in main loop), 3 (step size parameter for penalty),
L (number of iterations for the penalty loop), p (multiple point
impulse response of the imaging system (MPIR)), S (FOV
support: a binary mask equal to the sensor size), maxiter
(maximum number of iterations in the main loop (1000))

: Initialization:

18+ 0.2,

L <+ 20,

k<0,

S0 L

1,

v4+0

: for k=0 to maxiter do

Iprev =1 ®

11: 1< 0.01|[IP]]

D A S o

122 Cp 4 ||SO [Low — IV % p]||3

13: Nestrov Acceleration Loop with Backtracking Line
search

14: Initialization: flag < 1

150 Al (1% — %)
k=0.

Momentum term, set to zero for

16:  while flag AND ¢ > 10~ do

17: Liewt < I +~AI  [Nestrov Update]
18: dC1ext < VienCi [as given in equation (10).]
19: AC et 4= T,

20: Itry < Inext — tdclnext

21: Ciiry < IS © (o — Iy % p |3

22: if Cy,, < C) then

23: flag =0,

24 else

25: t=1/2

26: end if

27: end while

28: Update n [as given in equation (16)]

29: Update ~ [as given in equation (17)]

30: If,'ft) — Iy [intermediate solution]

31: Enforce positivity constraint on /. I(,]l? s

32:  Caleulate d; |1 — L]

33 [0 ®

34: Steepest descent loop for enforcing Sparsity
35: for[=0to (L—1)do

36: dC, + [V,Cz]lzlgk’,,> [as given in equation (13)]
37 IE;I:;H—I) A Ifrlz(t’h — pd, [Hddcﬁ]lfky*')

38: end for !

39:  1%+D « [ [next solution update]

40:  dy  [[1l) — 10D,

41: if d» > d; then

42: B+ 0.9558

43: end if

44: end for

45: Qutput: J&=maiter),
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