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Abstract

We summarize a study involving simultaneous imaging of cervical cells from
Pap-smear samples using bright-field and quantitative phase microscopy. The opti-
mization approach to phase reconstruction used in our study enables full diffraction
limited performance from single-shot holograms and is thus suitable for reducing
cost of a quantitative phase microscope system. Over 48000 cervical cells from
patient samples obtained from three clinical sites have been imaged in this study.
The clinical sites used different sample preparation methodologies and the subjects
represented a range of age groups and geographical diversity. Visual examination of
quantitative phase images of cervical cell nuclei show distinct morphological fea-
tures that we believe have not appeared in the prior literature. A PCA based analysis
of numerical parameters derived from the bright-field and quantitative phase
images of the cervical cells shows good separation of superficial, intermediate and
abnormal cells. The distribution of phase based parameters of normal cells is also
shown to be highly overlapping among different patients from the same clinical site,
patients across different clinical sites and for two age groups (below and above
30 years), thus suggesting robustness and possibility of standardization of quanti-
tative phase as an imaging modality for cell classification in future clinical usage.

Keywords: cervical cell imaging, quantitative phase, cell classification and
characterization, early cancer diagnosis

1. Introduction

Cervical cancer is the fourth most prevalent cancer among women worldwide.
Human Papillomavirus (HPV) is known to be the main cause of cervical cancer [1].
It is well-known that cervical cancer has long latency period. Pre-malignant abnor-
malities in cervical cells can take up to a decade to progress to carcinoma. Early
diagnosis of pre-cancerous cervical cells and treatment help in halting the progres-
sion of this fatal cancer [2]. The five year survival rate for patients suffering from
cervical cancer has been documented to be over 60% [3]. In spite of the long latency
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period for cervical cancer to develop, the mortality rate among cervical cancer
patients is high in developing countries due to shortage of skilled clinicians and lack
of effective screening tools [4, 5].

The cervix which is the innermost part of uterus is sub-divided between the
endo-cervix and ecto-cervix regions. The endo-cervix is composed of glandular cells
whereas the ecto-cervix is made up of squamous cells. Transformation zone is the
place where these regions adjoin, and where most of the cervical cancer is known to
originate [6]. Starting with the transformation zone the cells in the squamous region
are typically classified as basal, para-basal, intermediate and superficial respec-
tively. The majority of cells in a typical Pap-smear cell sample used for examination
by clinicians are from the intermediate and superficial outer layers. The classifica-
tion of precancerous cells as low grade and high grade is established through
Bethesda system [7, 8] which is based on morphological changes in the cells (par-
ticularly the cell nuclei). Traditionally the detection of precancerous cervical cells is
primarily performed using cytological screening. The widespread usage of liquid
based cytology (LBC) in recent years has made the process of sample preparation
and examination more uniform. However, screening methods based on visual
inspection can suffer from both inter- and intra-observer variability. Machine
learning based approaches have gained attention in this regard [9-13] and standard
benchmark datasets of cervical cell images have been created [14, 15]. The goal of
machine learning approaches is to make the process of cell classification at least
semi-automated and to provide an assisting tool for cyto-pathologists.

The machine learning based studies have focused mainly on the 2D bright-field
images of the cervical cells and their nuclei. Since cells are 3D objects, we believe
that additional morphological information in the third (depth) dimension of cells, if
available, can provide new information and help any image based cell classification.
Digital Holographic Microscopy (DHM) is an interferometric imaging technology
[16-18] which can fill this gap and provide quantitative phase information that may
then be related to the depth dimension of the cells. When a coherent beam of light
of wavelength 4 is transmitted through a cell, the wave-front undergoes a phase
change given by:

P(x,y) = Z/I—njdz n(x,9,%). (1)

Here n(x,y,z) represents the refractive index distribution within the cell relative
to its surroundings. It is important to understand that phase provides new non-
redundant information that cannot be derived from the usual 2D bright-field
images. The phase change ¢(x,y) cannot be measured directly by a 2D array sensor
but may be recorded in the form of an interference fringe pattern. Here the coher-
ent light source is first split into two beams, one of the beams passes through the cell
sample and the other reference beam travels through free space before the two
beams are recombined to record an interference pattern. As per Eq. (1), the phase
function contains information on optical path length (product of refractive index
and thickness) through the cell sample at location (x,y). While quantitative phase
images have been shown to provide interesting new information about cancer cell
morphology [19-22], clinically this modality is not yet popular and clinician are not
trained to interpret quantitative phase images. We therefore follow a protocol
where a focused bright-field image of a cervical cell is recorded along with phase
image of the cell in the same focus plane. This way the clinicians can correlate with
their traditional knowledge and treat phase images as an additional channel of
morphological information. Recently we demonstrated such an approach for
unsupervised organization of cervical cell images [23]. In the present imaging study
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over a much larger sample size with samples collected from different clinical sites,
we examine the structural changes in phase images of cervical cell nuclei and
highlight their potential importance for cell classification. Even though 2D images
are able to distinguish between the major stages of normal cells, the phase images
allow one to observe the morphological changes as the cells evolve through these
stages. Additionally we examine the structural characteristics of abnormal samples
as identified by practicing cyto-pathologists.

Traditional DHM systems are based on single-shot off-axis interference configu-
ration or the multi-shot phase shifting con-figuration. The single-shot off-axis sys-
tems are simpler and cheaper to build but the conventional Fourier filtering approach
for phase reconstruction in these systems leads to sub-optimal phase resolution. The
multi-shot phase shifting configurations offer full resolution but are hardware inten-
sive and require stringent vibration isolation thus making them difficult to employ in
clinical settings. In recent years our group has developed optimization based phase
reconstruction algorithms [24-27] for single-shot DHM systems which offer the
simplicity of hardware without compromising on resolution and quantitative phase
accuracy. The full diffraction-limited resolution capability of our system allows us to
treat the bright-field and phase images on par (with respect to their lateral resolu-
tion). The single-shot operation also reduces the cost of building a DHM system
making it more accessible for wider deployment. Based on our imaging study we find
that the phase images contain important morphological information associated with
different classes of normal as well as abnormal cells. Further this phase information is
seen to be robust across the samples from three clinical sites. Also the samples
consisted of age group of 17-60 years of the subjects. The cell morphology captured as
numerical parameters from the phase images can provide valuable additional infor-
mation to clinicians over what they usually access with routine bright-field micros-
copy. Our results suggest that phase imaging can become an important clinical
modality, and it should be possible to design phase-based software tools for clinicians
to make better informed decisions with this new information. The Chapter is orga-
nized as follows. In Section 2 we explain the technique of digital holographic micros-
copy (DHM) and the nature of quantitative phase images along with our phase
reconstruction methodology. Section 3 briefly describes the details of the cell samples
used. The results are discussed in Section 4. In Section 4.1 we start by showing images
of cervical cells in both bright-field and phase modalities to illustrate morphological
changes in cervical cell nuclei. This is followed by PCA analysis of the cell data based
on the morphological parameters derived from the cell images in Section 4.2. In
Section 4.3 we describe our analysis to understand if the most important phase
parameters for normal cells are consistent across different patients from same clinical
site, across different clinical sites and between different age groups. Finally in Section
5 we provide concluding remarks.

2. Digital holographic microscopy (DHM)

DHM is an interferometric modality where the recorded image data H(x,y)
represents interference between the object wave O(x, y) representing the light
which has interacted with the cell sample and the reference wave R(x,y) that has
not interacted with the sample is described as:

H=|R]>+|0 +R*O +RO*. (2)

Here * represents the complex conjugation of the corresponding wave-function.
In the image plane holography case as in the present study, O(x, y) represents the
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resultant image field corresponding to the cell sample slide when observed through
a 40x infinity corrected imaging system [23]. The interference is possible due to the
use of a laser source which ensures that the object and reference waves remain
temporally coherent at the detector plane and produce interference fringes with
good contrast. Since our DHM system is also fitted with a white light LED illumi-
nation which allows recording of the cell sample in the usual bright-field mode for
ease of interpretation by a clinician.

Reconstruction of single-shot holograms is traditionally performed using the
Fourier transform method. However, due to the low-pass filtering nature of this
method image plane phase recoveries with full pixel resolution cannot be obtained
using this approach. This poses a problem as the bright-field images available will
then seem to have higher resolution even though both have been recorded using the
same microscope objective. In order to have both bright-field and phase images
with same diffraction-limited resolution, we reconstruct of the complex object
wave O(x,y) using a sparse optimization method that has been developed by our
group in recent years. In particular, recovery of the complex image field O(x, y) is
posed as an optimization problem where we minimize a cost function of the form:

C(0,0*) =C1+C,

:HH—(WV+WV+RHD+MY)W+WKLOU. 3)

Here || ... ||* denotes the squared L2-norm of the quantity inside. The reference
beam R(x, y) is estimated by a separate calibration step involving recording of a
straight line interference fringe pattern without any sample followed by accurate
estimation of carrier frequency to fractional fringe accuracy [28]. The first term of
the cost function represents the least square data fit and the second term y(0,0™)
is a suitable image domain constraint. We use the modified Huber penalty function
as a constraint and use an adaptive alternating minimization scheme explained in
detail elsewhere [23, 26] for recovering the complex object function O(x,y) in the
image plane. The modified Huber penalty is defined as:

* VOk 2
p(0,0%)= Y wuﬁy|—1. (4)
k=all pixels

The tuning parameter 6 is made proportional to the median of the gradient
magnitudes of the image solution in a given iteration. The Huber penalty acts like
the edge preserving Total Variation penalty at pixels where the gradient magnitude
|[VO| is much larger than § and acts like the smoothing quadratic penalty for pixels
where the gradient magnitude is small compared to §. Further the adaptive optimi-
zation strategy makes sure that the change in the solution due to error minimizing
step is balanced by that due to Huber minimization step in every iteration. We point
out that the optimization problem above involves real valued data (hologram H)
whose solution is complex valued. The steepest descent directions evaluated in the
algorithm need to be evaluated using Wirtinger derivatives with respect to O*. In
particular we note that the Wirtinger derivatives for the two terms of the cost
function in Eq. (3) is given by:

vmq=—4H_m+m24R+m, (5)

and
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It is important to note that the optimization procedure operates fully in the
image domain making it possible to employ it over a region of interest and thus
allowing full resolution reconstruction in near real time. In our study, a 256 x 256
pixel ROI phase reconstruction requires few seconds ( <25 iterations) in a MATLAB
implementation on a desktop with 3.1 GHz processor. The data consistency error
for the reconstructed solution is within 5% relative error. A user can therefore select
a region of interest near a cell nucleus for object wave reconstruction. The resolu-
tion and noise advantage of this optimization procedure over traditional Fourier
filtering approach has been shown in a series of publications [24-27, 29], as a result,
we will not discuss this point here once again. However for completeness we
summarize the advantages of the optimization method in comparison to the
traditional methods for image plane hologram processing in Table 1.

The phase map ¢(x,y) as in Eq. (1) is the argument of the recovered complex
object field O(x,y) and is given by arctangent of the ratio of imaginary and real parts:

Im [O<x,y)]) . )

¢(x,y) = arctan <m

Since the arctangent function is defined only over the range [—x, z] the phase
map defined in Eq. (4) is wrapped. A 2D unwrapping procedure based on the
transport of intensity equation (TIE) [30] has been employed in our work in order
to associate physical meaning to the phase map in accordance to Eq. (1). The steps
involved in imaging are summarized in supplementary (Figure 1). A Pap-smear
sample is first imaged in both bright-field and holographic modalities using a dual
mode digital holographic microscope (fabricated by Holmarc Opto-Mechatronics
Pvt. Ltd., Kochi, India). The holographic (or interferometric) image is used further

Processing method Single/Multi-shot Resolution

Fourier filtering Single-shot Low resolution

Phase shifting Multi-shot Full diffraction-limited

Optimization Single-shot Full diffraction-limited
Table 1.

Summary of resolution performance of image plane digital holographic methods.

Bright field image

(e) 3D Rendering of
(a) Pap-smear  (b) DHM (d) Full resolution phase phase map
slide system reconstruction

Figure 1.

Steps in imaging chain (a) Pap-smear slide, (b) dual-mode DHM system, (c) illustrative example of a bright-
field image and a hologram vecorded using the DHM system, (d) computer used for reading image from camera,
phase veconstruction and computing morphological parameters from the bright-field and phase images, (e)
illustrative example of phase map of a cell nucleus rendered as a surface plot.
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Modality

Parameter

Parameter description®

Bright-field

Area

ijlek

Nucleus perimeter

Number of boundary pixels of M

Mean intensity of

R, G, B componentsAverage R, G, B values computed over
mask M

Variance of

R, G, B componentsVariance of R, G, B values computed
over mask M.

N/C Ratio

Ratio of areas (Nucleus)/(Cytoplasm) Labels assigned: low

=1, mid =2, high = 3

Quantitative Mean and maximum

phase

¢ and maximum of ¢ computed over mask M
phase

Optical volume (Area) x (¢) Computed over mask M.

Variance of phase Variance 65) computed over mask M.

Roughness at scales 1,075, 0.5, 0.25 > 4, |(Vh) | computed over mask M.

Moment of inertia of nucleus } (gﬁjk)djzk dj, = distance between centroid and

other pixels in mask M. Provides information about material

distribution.
Shift between 17 geom — 7 phasel
geometric and phase
centroid

“M denotes a binary (0, 1) mask for individual cell nucleus, q denotes phase map. Both are defined over ROI of
256 x 256 pixels centered on cell nucleus.

Table 2.
Morphological parameters evaluated for each cell nucleus imaged in this study. Move details about these
parameters are provided in Table 1 of ref. [23].

for phase reconstruction as explained above. Table 2 provides details about a
number of morphological parameters derived from the cell images in the bright-
field and quantitative phase modes. The morphological parameters were decided in
consultation with practicing cyto-pathologists who participated in this study. We
summarize them in Table 2 for convenience of the reader. The N/C ratio which is
the ratio of nucleus to cytoplasm areas has been included as list of three labels

(low = 1, medium = 2, high = 3). This is because we found that a number of cells in
the patient samples appeared in clusters and it was difficult to find boundaries of
cytoplasm in simple automated manner in such cases.

3. Details of samples

We imaged a total of 48,006 cervical cells from 291 Pap-smear slides from three
different hospitals in Delhi: AIIMS (All India Institute of Medical Sciences, New
Delhi), LHMC (Lady Hardinge Medical College, New Delhi) and MAMC (Maulana
Azad Medical College, New Delhi) (see Table 3). The samples were upto three
years old (not from current patients) and stored in the repositories at the respective
sites. They were collected by following the standard protocols for the Pap-smear
examination. The patients varied in age from 16-70 years and came from varied
geographical locations in India. The cell samples can be prepared conventionally or
with Liquid-based cytology (LBC). For each method staining is performed with Pap
stain for visualization with bright-field microscopy. For our study we have used
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Clinical site Preparation method Number of patients Normal  Abnormal
normal / with condition * cells cells

AIIMS, New Delhi Liquid based cytology 66 /33 18801 532
(ThinPrep)

LHMC, New Delhi Liquid based cytology 174 /9 28007 214
(SurePath)

MAMC, New Delhi Conventional 6/3 438 14

Totals 246 / 45 47246 760

“As determined by clinicians.

Table 3.
Details about cell samples used for imaging from the three clinical sites.

both types of samples. Two of the sites used liquid based cytology (LBC) slides
prepared via ThinPrep and SurePath systems; while third site used conventional
Pap-smears. In LBC method, samples are collected in liquid vials and the slide is
prepared semi-automatically. The advantage of LBC is uniformity in sample prepa-
ration. On the other hand in conventional cytology the sample is applied directly to
a slide for microscopic investigation. Table 3 provides details about number of cells
imaged. The classification of normal vs. abnormal cells in these samples was pro-
vided based on the bright-field images by practicing cyto-pathologists (S. R. M., M.
S.,K. A., S.S.). The normal cells here include the superficial and intermediate cells
while the abnormal cells include LSIL, HSIL, SCC, ASC-H and ASC-US type of
cells [31].

4. Results
4.1 Ilustrative bright-field and phase images of various cervical cell types

In this section we begin by providing sample images of cervical cell nuclei that
were obtained using our dual-mode DHM system. While quantitative information
obtained in terms of morphological parameters is certainly important, a large num-
ber of clinical sites worldwide typically use visual examination of cells using a
bright-field microscope for cell classification. The importance of changes in nucleus
structure in cancer diagnosis is already well-known [32]. With the illustrative
examples in this section, we wish to qualitatively describe the morphological fea-
tures observed in quantitative phase images of cervical cell nuclei in various stages.
The simultaneous presentation of bright-field images (that pathologists can corre-
late to) and the quantitative phase images as shown here is important in our opinion
from the perspective of clinical users. It is important to note that our single-shot full
resolution phase reconstruction technique allows us to observe the quantitative
phase images with the same resolution as the bright-field images. The examples
shown here also aim to illustrate that the information contained in the quantitative
phase images is different in nature from that in the bright-field images. Quantitative
analysis of the images using morphological parameters as described in Table 2 will
be provided in the following sections. In Figure 2 we show illustrative examples of
normal cells in the intraepithelial squamous layer. A progression from intermediate
to superficial stages is shown in Figure 2(a)—(j) respectively. As a cell progresses
from intermediate to superficial stage the chromatin in the cell nucleus is known to
condense. The superficial cells are in the outermost layer of ecto-cervix and have
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I Bright filed image | Bright filed image

Figure 2.

Maturation of cells in intra-epithelial squamous layer from intermediate to superficial is shown from (a)-(j) in
both bright-field and phase modes. The phase maps correspond to the ROIs marked in the bright-field images.
As the nuclei progress to superficial stage, the nucleus avea gets smaller and the phase profile is seen to get taller
by approximately a factor of 2.

highly condensed pyknotic nucleus. While in the bright-field images the area of the
nucleus is progressively decreasing and the color of the nucleus gets darker from
intermediate to superficial stages, the accompanying phase map of the nucleus is
seen to get taller by approximately a factor of 2. This change in the optical height
profile cannot be inferred from the 2D bright-field images and the phase map is
therefore seen to provide new morphological information. Further, from the phase
profiles we also see that the evolution of the cells from intermediate to superficial
stage happens via a continuous change. Next in Figures 3-5 we examine the
abnormal cell classes low grade squamous intraepithelial lesion (LSIL), high grade
squamous intraepithelial lesion (HSIL) and squamous cell carcinoma (SCC) which
progressively indicate higher grade abnormalities. The class LSIL consists of abnor-
mal superficial and intermediate cells. Variable degrees of hyper-chromasia, nuclear
size variation with coarsely granulated chromatin are identifiers of a typical LSIL
cell. In the HSIL class, the degree of nuclear enlargement and hyper-chromasia is
more than LSIL and the cells here are found in sheet-like aggregates. In both LSIL
and HSIL cases the phase profiles of the cell nuclei are seen to have increased
roughness or corrugations compared to the normal cells. In the SCC class which is
considered to be a confirmed case of malignant cervical smear, the phase profile of
the nucleus shows sharp narrow peaks with large phase values. It is once again
important to note that the phase profile clearly provides new morphological infor-
mation that is not readily available in the 2D bright-field images. Apart from the
main classes above, the Bethesda system defines a class Atypical Squamous Cells

(oo}
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Bright filed image Bright field ROI Phase Profile

Figure 3.
Hlustration of LSIL cells, the three columns show the bright-field image, selected ROI and the phase image of the ROL.

| Bright filed image |

Figure 4.
Hlustration of HSIL cells, the three columns show the bright-field image, selected ROI and the phase image of the ROL

9
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Bright filed image Bright field ROJ | Phase Profile

Figure 5.
Hlustration of SCC cells, the three columns show the bright-field image, selected ROI and the phase image
of the ROL

ASC which include the samples that cannot be categorized as normal or abnormal
typically. The nuclei in this class are typically larger in area, however, as seen in
Figure 6, the average phase value in the nucleus is slightly lower compared to the
LSIL, HSIL or SCC classes. In both ASC-US and ASC-H classes (Figure 6), the phase
profile has undulations but the phase structure of ASC-H is flatter with lower
average phase value in the nucleus as compared to that of the ASC-US cells. Further
in some ASC nuclei, we observe local peaks in phase profile located near the nuclear
boundary leading to a dip in the center. Finally we show rare abnormal cell cases in
Figure 7 that include inflamed, reactive, moon-type, virus-infected and koliocytotic
classes. Just a few examples of these rare cells were present in our sample set. The
phase profile for all these types appears corrugated with lower average phase values
except for the virus infected cell type. While only a few representative images of
each cell type have been shown simultaneously in bright-field and phase mode, we
clearly observe that the phase profile offers distinctive morphological features that
are not currently utilized in the clinical practice. This new information if incorpo-
rated in cyto-pathological examination, can be potentially valuable to clinicians.

4.2 PCA analysis of quantitative parameters obtained from bright-field and
phase images of cervical cell nuclei

A MATLAB based software was designed to compute a number of morphological
parameters associated with cell nuclei that are listed in Table 2 from each of the cell
nuclei imaged in bright-field as well as quantitative phase mode. The cell nucleus
measurement data was therefore consisted of an (N x p) matrix with N = 48,006

10
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| Bright filed image | Bright field ROI

(a)

! -

Figure 6.
Hlustration of (a), (b): ASC-US cells and (c), (d): ASC-H cells, the three columns show the bright-field image,
selected nucleus ROI and the phase image of the ROL

and p = 20. Note that one parameter in the measurement set is the N/C ratio which
was given three labels (low =1, mid =2, high =3) based on visual inspection of
nuclei. This was done so that a number of cells of interest that appeared in clusters
for which determining the cytoplasm boundary was difficult could be used in the
analysis. All the other parameters were measured over the nucleus region in an
automated fashion. For the present analysis, the cells were nominally labeled as
superficial, intermediate and abnormal (including LSIL, HSIL, ASC-US, ASC-H,
SCC) by practicing cyto-pathologists (S. R. M., M. S., K. A., S.S.). Since the number
of abnormal cells was much smaller (1.6%) compared to the normal (superficial and
intermediate) cells, a truncated data-set with 450 randomly selected cells from each
of the three types (superficial, intermediate and abnormal) as per prior labelling
was used to train the PCA. Denoting the truncated data matrix with 1350 rows and
20 columns (representing the measurements) with each column in standard form
(zero mean and standard deviation 1) by A, the PCA solves the eigenvalue problem:

AT Auy, = puy,. (8)

Here the superscript “T” stands for the transpose of the matrix A. The eigen-
vectors u;, are mutually orthogonal and are called as the principal vectors. All the

11
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Bright filed image Bright field ROI

Hlustration of rare abnormal cell types: (a) inflamed, (b) reactive, (c) moon-type, (d) virus-infected and
(e) koliocytotic; the three columns show the bright-field image, selected nucleus ROI and the phase image of the ROL

cell data corresponding to the 48006 cells was then projected on the PCA vectors.
The plot of first two components of PCA for all the cells is shown in Figure 8.

The color coding of black, blue, and red corresponds to cells that were labeled
separately by cyto-pathologists as superficial, intermediate and abnormal (all clas-
ses) respectively based on the bright-field images of the nuclei. Typical bright-field
and phase images of cells from the three different regions of the PCA plot are also
shown for illustration. The PCA plot based on bright-field and phase information
separates most of the cells in three different classes, despite some overlap in adja-
cent classes. In particular, it is interesting to observe that almost all the cells labeled
as abnormal fall in the bottom right corner of the PCA plot. We further examine

[u—y
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Figure 8.
Data corresponding to 48006 cells projected onto the first two PCA vectors. The color coding of black, blue, and

red corresponds to cells that were labeled by cyto-pathologists as superficial, intermediate and abnormal (all
classes) respectively.

four cells labeled as 1, 2, 3, 4 on the PCA plot that showed unexpected classification
when phase parameters were used. Cells 1, 2 were labeled abnormal by the pathol-
ogist but were seen to be well within the intermediate region. Similarly the cells 3, 4
were labeled as intermediate but were observed to be well within the abnormal (red
points) class. For a closer examination of this anomaly, we show bright-field and
phase images of these cells in Figure 9. A re-examination of these cell images by
pathologists suggested the following. Cell 1 is koliocytotic (abnormal) but it appears
to have a dried up cytoplasm and leading to low phase values in the nucleus. The cell
2 is actually very similar to intermediate cells in general, but the pathologists labeled
it as abnormal due to comparatively smaller sizes of other nuclei on the particular
sample slide. The parameters associated with cell 3 are similar to abnormal cells but
it is a rare example of enlarged intermediate cell. Finally cell 4 has folded cytoplasm
leading to higher phase values although the cell may be considered to be of the
intermediate class. Re-examination of these and other similar anomalies reveal that
cervical cell classification has some aspects beyond simple numerical measurements
performed on cell images (either in phase or bright-field modes) that need to be
taken into account by any automated cell classification methodology. The issues like

13
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Abnormal in Intermediate Region Intermediate in Abnormal Region

300 100

0
2
1
0,
0
100
200
300
200
300 & 100
Figure 9.

Examples of intermediate and abnormal cells falling well within the abnormal and intermediate regions of the
PCA plot in Figure 8.

folding of cell cytoplasm can for example be minimized with the LBC preparation
methodology. PCA analysis was used here because the plot as in Figure 8 can be
generated essentially in an unsupervised manner, however, it is certainly not the
best classification methodology available today. In future we hope to test the possi-
bility of cell classification using more advanced machine learning ideas applied to
this data.

We further performed a leave-one-out analysis of the PCA for the cell data to
determine which of the 20 measurements influenced the PCA scores the most [33].
If the PCA eigenvectors are arranged as columns of a matrix U the scores Z for the
data corresponding to the principal components may be expressed as:

Z =AU. 9)

The plot in Figure 8 thus corresponds to the first two columns of the score
matrix Z. For the leave-one-out analysis, the PCA was performed at a time with only
19 parameters by leaving one of the measured parameters one by one. The data
matrix, the eigenvector matrix and the score matrix corresponding to the case
where j-th measurement (j = 1,2, 3, ..., 20) is left out may be denoted byA(_j), U
and Z(7 respectively. The importance of the j-th measurement is judged by the
Procrustese distance D; between the first M = 2 columns of the score matrices Z
and Z(7). A specific parameter will be judged to influence the PCA the most if its
corresponding Procustes distance D; is higher. The top five morphological parame-
ters in order of importance are shown in Table 4. The relative Procrustes distances

Morphological parameter Modality Relative Procrustes Distance D ;
Moment of inertia Phase 1.0
Optical volume Phase 0.85
N/C Ratio Bright-field 0.83
Perimeter of nucleus Bright-field 0.79
Mean phase of nucleus Phase 0.76
Table 4.

Relative importance of numerical parameters using leave-one-out analysis applied to PCA.

14
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are calculated by dividing all the distances D; with (j = 1,2, 3, ...,20) by the
maximum among them. We find that among the top five parameters that influenced
the PCA scores the most, three were derived from the phase images while two were
derived from the bright-field images. It may be noted from Table 4 that two phase
based parameters (moment of inertia and optical volume) influence the PCA more
than the commonly used N/C ratio criterion. We therefore believe that quantitative
phase may prove to be an important future imaging modality in addition to the
commonly used bright-field microscopy for cervical cell classification.

4.3 Consistency of phase parameters

Quantitative phase is not a standard clinical methodology for cell classification,
however, as we showed in Section 4.2, quantitative phase may become an important
modality to consider for future clinical use. It is therefore important to understand
if the phase parameters for cervical nuclei are consistent across different subjects
from same clinical site, age group of subjects or clinical sites with different sample
preparation methodologies. Since our leave-one-out PCA analysis suggested that
optical volume and moment of inertia are the most important phase parameters as
explained in the previous section, we have plotted a few hundred randomly selected
normal cells (superficial and intermediate) with respect to these phase parameters
in Figure 10. In Figure 10(a) we show the plot for 200 normal cells each for five
different patients from a single clinical site. Figure 10(b) shows the same plot for
200 cells each from three different clinical sites with different sample preparation
protocols. In Figure 10(c) we show the plot once again for 500 normal cells for two
different age groups (below and above 30 years). From these plots we observe that
the normal cells from different categories as above show highly overlapping distri-
butions for the most important phase parameters. We believe that this observation
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Figure 10.

Verification of consistency of the two most important phase parameters (moment of inertia and optical volume)
decided based on the leave-one-out analysis; (a) plot of 200 cells each for 5 patients from the same clinical site
(AIIMS), (b) plot of 200 cells each from three clinical sites with different sample preparation protocols, (c)
plot of 500 cells each for patients below and above 30 years of age. The numerical values of moment of inertia
and optical volume are normalized to standard form (zero mean and standard deviation one).
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Figure 11.

Hlustration of bright-field and phase imaging of unstained cervical cells: (a), (d): Bright-field images of
unstained cells, (b), (e): Nucleus ROI selected from the bright-field image, (c), (f): Phase map of the unstained
nuclei.

is very important for standardization and usage of quantitative phase imaging
methodology in future clinical practice.

4.4 Observations on quantitative phase imaging of unstained cervical cells

In this section we briefly describe an interesting possibility of quantitative phase
imaging of unstained cervical cell samples with two typical images of normal cells as
shown in Figure 11. For unstained cervical cell samples, the Pap smear was pre-
pared using the conventional method and cells were fixed with ethyl alcohol. While
the staining protocols used in Pap-smear sample is a gold standard for diagnosis by
cyto-pathologists, we note here that compared to stained cells, the phase signal
observed from nuclei of unstained unprocessed cell samples is almost three times
higher in magnitude. While interpretation of images of the unstained cells and their
phase may require one to go through a learning process, the possibility of using
unstained cell samples for diagnostic practice may offer an attractive alternative as
the cell sample preparations will not involve any wet-lab processing and recurring
costs associated with reagents.

5. Conclusions

In conclusion we have reported an image based study of cervical cells at various
stages using bright-field as well as quantitative phase microscopy. Over 48000 cells
have been imaged individually. The phase images of the cell nuclei were
reconstructed using an optimization approach that provided same resolution as the
bright-field images. This image data-set may be valuable for future application
development using advance machine learning methods. The visual inspection of
images shows interesting features in the phase images as the cells evolve from
intermediate to superficial stages with distinct features associated with abnormal
cells. This finding based on visual inspection is confirmed in the PCA analysis of the
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morphological parameters of cells derived from both the bright-field and phase
images of cell nuclei. A leave-one-out analysis applied to the PCA scores suggests
that apart from the N/C ratio that has been used for identifying abnormal cells for
decades, the other two parameters that influence the PCA the most are optical
volume and moment of inertia of nucleus - both of which are derived from phase
images. A consistency study suggests that the phase parameters associated with
normal cells show highly overlapping distributions for multiple patients from same
clinical site, for three clinical sites with different sample preparation protocols and
for patients in two age groups. The consistency of phase parameter distributions for
these cases further suggest that phase is a robust modality that can certainly be used
in a standardized manner in clinical practice. We believe that quantitative phase
may become an important imaging modality in addition to the bright-field imaging
that is solely used in the current clinical practice. While this study has been
performed for cervical cells we believe that our conclusions regarding importance
of quantitative phase may possibly have a wider applicability.
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