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We1 present a single-shot computational imaging system employing pupil phase engineering to extend the field of
view (FOV) beyond the physical sensor limit. Our approach uses a point spread function in the form of a multiple-
point impulse response (MPIR). Unlike the tradition2 al point-to-point imaging model used by most traditional
optical imaging systems, the proposed MPIR model can collect information from within and outside the sensor
boundary. The detected raw image despite being scrambled can be decoded via a sparse optimization algorithm to
get extended FOV imaging performance. We provide a thorough analysis of MPIR design regarding the number
of impulses and their spatial extent. Increasing the number of impulses in MPIR of a given spatial extent leads to
better information gathering within the detector region; however, it also reduces contrast in the data. Therefore,
a trade-off between increasing the information and keeping adequate contrast in the detected data is necessary
to achieve high-quality reconstruction. For generalization, we first demonstrate this trade-off with a simulation
study and present experimental results on a suitably designed extended FOV imaging system. We demonstrate
reconstructed images with a 4× gain in pixels over the native detection area without loss of spatial resolution. The
proposed system design considerations are generic and can be applied to various imaging systems for extended FOV
performance. ©2023Optica PublishingGroup
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1. INTRODUCTION25

Computational optical imaging systems combine unconven-26
tional imaging hardware and image reconstruction algorithms27
to achieve imaging performance beyond what is possible28
with traditional imaging devices [1]. This model has enabled29
researchers to investigate novel system concepts, where the30
recorded raw data on the sensor may not have any visual similar-31
ity to the object being imaged. Traditional cameras, comprising32
a lens and a sensor, closely resemble the human eye. As a result,33
there is a point-to-point mapping between the object and the34
recorded image. The physical sensor extent therefore limits35
the field of view (FOV) of such imaging systems. In practice,36
the design of an imaging system involves a trade-off between the37
resolution and FOV [2]. An imaging system with simultaneous38
large FOV and high resolution is, however, desirable in several39
practical applications, e.g., in biomedical imaging systems such40
as digital pathology [3] and hematology [4], as well as commer-41
cial applications such as consumer photography [5]. Large FOV42
is routinely obtained in commercial digital pathology systems43
such as whole slide scanners by scanning the object to be imaged44
and then stitching the individual limited FOV images [3]. The45
technique is also used in panorama photography mode, which46
is now commonly available in most smartphone cameras. The47
requirement of overcoming the fundamental FOV–resolution48

trade-off has led to the emergence of novel system concepts 49
such as Fourier ptychography [6] and gigapixel photography 50
[5], which provide large FOV high-resolution imaging. Fourier 51
ptychography is a coherent imaging technique that uses low- 52
resolution large FOV optics and allows resolution beyond the 53
diffraction limit by employing a diversity of plane waves for 54
illumination. The need for sequential illumination with one 55
plane wave at a time, however, impairs the temporal resolution 56
of the system. Gigapixel multi-scale photography [5] utilizes a 57
large number of cameras configured so that each camera images 58
a local part of the overall scene, thus reducing the requirement to 59
correct system aberrations. The pictures from multiple cameras 60
are fused to obtain an image of nearly uniform quality across a 61
large FOV. Gigapixel cameras are bulky, and the ultimate image 62
resolution is decided by the individual camera lenses instead 63
of the total system aperture. Other scan-free methods for wide 64
FOV include the use of the Mesolens [7], compounded eye 65
lens [8], and learned thin plate imager [9]. These prior studies 66
have provided important insights for designing large FOV 67
imaging systems as summarized in a recent review [10] on large 68
space–bandwidth product (SBP) imaging. 69

An important system configuration for large SBP imaging 70
is structured illumination microscopy (SIM), which achieves 71
improved spatial resolution without changing the FOV. This is 72
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accomplished by utilizing coded illumination, which enables73
the access of higher spatial frequencies outside the passband74
of the imaging system (as determined by the Fourier plane75
aperture). Our initial work [11] indicates the viability of an76
extended FOV imaging system analogous to SIM where the77
roles of spatial and Fourier space are exchanged. In particular,78
structuring in the Fourier space can increase the effective image79
capture area beyond the physical sensor limit. A specific design80
for such a system involves a Fourier plane filter that leads to a81
multiple-point impulse response (MPIR) [11,12]. The MPIR82
component of the system point spread function (PSF) enables83
the collection of object data that would otherwise be outside84
the sensor array’s active region. The recorded image appears85
scrambled and visually difficult to interpret; however, it has86
adequate information to form an extended FOV image with87
an appropriate reconstruction algorithm. The main aim of this88
paper is to build on the conceptual ideas introduced in [11]. We89
provide a detailed exposition of the expected extended FOV per-90
formance with a series of MPIR designs with a varying number91
and spatial extent of the multiple impulses. A proximal gradient92
based algorithm is described that uses image sparsity ideas (in93
the form of a total variation penalty function) for achieving94
extended FOV image reconstruction. Our MPIR design con-95
siderations and the reconstruction algorithm are further tested96
with an experimental system that employs a phase-only spatial97
light modulator (SLM) device for realizing the required Fourier98
plane phase mask. In the context of computational imaging,99
pupil phase engineering concepts have been previously used100
mainly for extending the depth of focus using cubic phase [13]101
and log-asphere [14] masks, extending spectral range [15], and102
encoding depth information with rotating PSF [16]. Here,103
we add to this series of important system developments with104
a system design that extends the FOV of the imaging system105
beyond the physical sensor area with a single image capture.106

The paper is organized as follows. In Section 2, we describe107
the basic concept behind an extended FOV system. Section 3108
describes an iterative image reconstruction algorithm for109
extended FOV image reconstruction that utilizes image sparsity110
ideas. The algorithm is then used for image reconstruction with111
various MPIR designs later in the paper. In Section 4, we high-112
light two important considerations that we term as information113
regime and contrast regime that provide generic guidelines for114
selecting a specific MPIR design for good image reconstruction115
performance. Section 5 describes experimental results with a116
USAF chart object to illustrate extended FOV image recov-117
eries. In Section 6, we provide concluding remarks and future118
directions.119

2. EXTENDING FOV IMAGING BEYOND120
PHYSICAL SENSOR BOUNDARIES121

To encode large FOV information into a constrained detector122
region, we examine an imaging system with a PSF designed123
to have multiple spatially separated impulses. Such a PSF can124
be implemented for incoherent imaging systems by adding a125
suitable phase mask to the imaging system’s Fourier plane. We126
can create the phase mask via iterative Fourier transform algo-127
rithms that are now readily available along with commercially128
available SLM devices. Alternatively, the desired phase masks129

may be fabricated by lithographic procedures. In line with our 130
discussion of the extended FOV as analogous to SIM imaging in 131
the previous section, the distribution of impulses may be made 132
similar to the Fourier band structure in SIM configurations 133
[17]. Horisaki and Tanida [18] used a multiplexing scheme 134
to improve FOV detection capability. Their work, however, 135
achieves the increased FOV in one direction. Additionally, a 136
thorough study is needed to determine how many impulses are 137
needed and how they should be distributed spatially to create 138
an extended FOV system. The issue is further addressed by 139
employing a random convolution strategy in [19]. However, 140
unless careful thought is given to the number of impulses and 141
their spatial extent, the scrambled image data may not lead to 142
optimal reconstructed image quality. Recently, Yao et al. [20] 143
used a lenslet array with lenses distributed spatially in a hexago- 144
nal manner to record an image with overlapping of adjacent 145
FOVs. These scrambled data are then directly used along with 146
machine learning to categorize different types of cells over an 147
extended FOV. In the following sections, we report an intuitive 148
approach with a systematic study of the number of impulses and 149
their distribution to illustrate these points and provide design 150
considerations to achieve good quality extended FOV image 151
reconstruction. 152

A. Extending FOV Imaging with Multiple-Point PSF 153

For an imaging system using a spatially incoherent illumination, 154
the forward model for the measured intensity in the image plane 155
is given by 156

Iout(r)= Iin(r) ∗ p(r)+ n(r). (1)

Here, Iout, Iin represent the 2D output and input, respec- 157
tively. p(r) is the incoherent PSF of the system, which is related 158
to the coherent impulse response h(r) of the system through the 159
relation 160

p(r)= |h(r)|2, (2)

and n(r) is the noise in the measurement, which is assumed to 161
be additive. Intuitively, the simplest PSF for accessing informa- 162
tion beyond the physical sensor boundary is the MPIR [11] as 163
shown in Fig. 1(d). This PSF consists of spatially distributed 164
impulses to bring information that usually goes outside the 165
physical sensor boundary within the detection region as shown 166
in Fig. 1(e). In its idealized form, the MPIR consists of multiple 167
delta impulses at the locations (x j , y j ) and may be described 168
mathematically as 169

p(r)=
J∑

j=1

a j δ(r− r j ), (3)

where a j is the positive valued weighting factor of the j th 170
impulse, and J is the total number of impulses, such that 171
6 j a j = 1. In a real system, each of the delta functions above 172
will be replaced by a diffraction-limited spot. The shift and 173
add nature of data collected using the MPIR is expected to be 174
better at preserving the high-spatial-frequency information 175
compared to impulse responses with continuous functional 176
forms over the same spatial extent. For convenience, we follow 177
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Fig. 1. Image acquisition with multiple-point impulse response (MPIR). (a) Siemens star as a target object. (b) PSF of the traditional imaging sys-
tem as a single-point impulse response; (c) image captured using single-point impulse response. A yellow dotted square shows active area of the sen-
sor, which limits the FOV of the captured image. (d) Proposed PSF configuration as multiple-point impulse response. (e) Scrambled output image
recorded with MPIR on the limited size sensor shown by yellow dotted square. (f ) Restored full FOV image using sparse recovery algorithm.

the lexicographic notation of linear algebra and vectorize the178
2D image representation as a 1D vector. Therefore the above179
imaging system as described in Eq. (1) can also be written into180
the form of a linear system of equation as181

y = Ŝ Âx + noise. (4)

As illustrated pictorially in Fig. 2, y = Iout ∈ R M×1 are the182
measurements over a limited detector area, and x = Iin ∈ R N×1183
is the unknown extended FOV image. The operator Â ∈ R N×N184
represents the measurement matrix that performs 2D convo-185

lution with MPIR in matrix form, and Ŝ = sij ∈ R M×N is the186
truncation operation over a limited detector area with entries187
as zero and one, applied to this system. Clearly, the number of188
measurements M is now less compared to the number of pixels189
N in the unknown extended image to be recovered. Specifically,190
sij = 1 if and only if data lie within the sensor’s active area and 0191
whenever outside the sensor domain.192

We may note that when the imaging sensor is large enough to193

capture all the measurements, i.e., M = N, in that case, Ŝ is the194
identity matrix; otherwise, it has ones within the active area of195
the sensor and zeros elsewhere as shown in Fig. 2. The increase in196
the FOV of the imaging system therefore depends on the entries197

in the matrix Â. In other words, the number of impulses and 198
their distribution control the effective FOV extension. In this 199
work, we use an analogy from SIM systems to get insights into 200
impulse distribution. These conditions are similar to the ones 201
generally encountered in SIM to extend the frequency space 202
coverage. However, we remark that the extended FOV system 203
we describe here has certain unique aspects of its own, making it 204
possible to get large FOV imaging performance in a single-shot 205
operation. 206

3. ALGORITHM FOR EXTENDED FOV IMAGE 207
RECOVERY 208

To recover the missing FOV information from the scrambled 209
data, we formulate image reconstruction as a constrained 210
minimization problem as follows: 211

min
1

2
‖y − Ŝ Âx‖2

2 + λ‖x‖TV. (5)

Here, the first term represents the data fidelity (in terms of 212
L2-norm squared error), and ‖ ‖TV is the discrete total variation 213
norm. We have used anisotropic total variation [21] in this 214
work. The positive valued parameter λ is the weight between 215

Fig. 2. Mathematical model of the proposed imaging system. A target object x gets scrambled by the measurement matrix Â. The scrambled mea-
surements are then captured by the limited FOV sensor represented by truncation operator Ŝ. Vector y represents the scrambled data captured with a
limited FOV sensor.
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the data fidelity and the constraint terms. The proximal gradi-216
ent descent method is adopted to solve the above non-smooth217
optimization problem [22]. In this class of algorithms, the218
objective is split into two terms: the first is differentiable and219
solved by a gradient descent step, and the second is non-smooth,220
which is handled using the proximal operator in an alternative221
manner. For adaptive tuning the parameter λ during iterations,222
we employ a methodology inspired by the adaptive steepest223
descent projection onto convex sets (ASD-POCS) algorithm224
[23] in computed tomography and described below. This225
methodology has been used in an earlier work in the context of226
digital holography [24] as well as our earlier work on extended227
FOV reconstruction [11]. We initialize the iterative process228
with a guess solution x 0, which is the same as the measured data229
y and is zero-padded up to the desired extended FOV image230
size. In particular, if the detector size is m × n and the spatial231
extent of the MPIR PSF is p × q , then the extended FOV image232
has a length of (m + p − 1)× (n + q − 1). From the imple-233
mentation perspective, for kth iteration, a gradient descent234
update is applied to the data fidelity term to get an intermediate235
solution vk :236

vk
= x k−1

− t[ ÂT ŜT(Ŝ Âx − y )]k−1. (6)

Here, (.)T represents the transport operator. Step size t is237
calculated using the back-tracking line search method. Once the238
intermediate solution is available, the proximal operator of the239
total variation is evaluated [22] to get the next guess solution:240

x k
= proxTVλk (v

k). (7)

Applying the proximal operator involves solving a convex241
optimization problem given by242

proxTVλk (v
k)=min λ ‖x‖TV +

1

2
‖ x − v ‖2

2 . (8)

The parameter λ is initially selected (for the first outer itera-243
tion) to be 0.1 and is then adjusted as follows. After every outer244
iteration, the change in the solution due to the gradient descent245
step is first calculated as246

d1 = ‖v
k
− x k−1

‖
2
2, (9)

and the change in solution due to the application of the proximal247
operator is evaluated as248

d2 = ‖x k
− vk
‖

2
2 . (10)

If the change d2 is close to d1, (d2 > 0.95d1 in our case),249
parameter λ reduces by a factor 0.99, else the same λ is used250
in the next outer iteration. This choice of λ parameter adjusts251
the change in the intermediate solution vk due to the proximal252
operation from iteration to iteration. To further accelerate253
the convergence speed of the algorithm, we employ the well-254
known Nesterov [25] update. In particular, the gradient descent255
update [in Eq. (6)] is applied to the solution with an additional256
momentum term:257

uk
= x k
+ γk(x k

− x k−1), (11)

with258

γk =
k

k + 3
, (12)

and u(0)= x (0) as suggested by Nesterov. In the following 259
sections, the same algorithm described here is applied to various 260
simulations and experiment. 261

4. SIMULATION RESULTS ON PSF DESIGN 262

To better comprehend how the extended FOV system functions, 263
we take into account the image reconstruction performance for 264
a number of factors, including the number of impulses in the 265
MPIR, the relative spatial extent of MPIR, and the detector 266
size. The simulations give clear instructions for practical system 267
design as well as a solid grasp of the extended FOV concept. In 268
the following, we present experimental findings based on these 269
factors. For the simulation study, we used the typical Siemens 270
star object represented over in a 256× 256 pixel matrix. 271

A. Necessary Condition 272

While MPIR-like impulse response enables extended FOV 273
image recovery, the extent and number of impulses in the MPIR 274
need to follow certain conditions for an artifact-free recon- 275
struction. The recorded data in our system are available over 276
the limited detector area. As per Eq. (6), these limited detector 277
data are extended to a region decided by convolution of the 278
detector area with the transposed PSF p(−r). This overlap area 279
represents the union of detector space corresponding to various 280
impulse positions [26]. We observe that the restored informa- 281
tion depends on the degree of overlap within the detector area 282
that is achieved in the transpose operation. A similar considera- 283
tion also usually arises in SIM systems, where the reconstruction 284
quality depends on the overlap between various Fourier bands 285
[17]. For a given impulse distribution and sensor area, overlap- 286
ping can be increased by increasing the number of impulses or 287
reducing the extent of PSF. Increasing the number of impulses 288
within a given extent brings object information from various 289
regions into the detection domain, therefore increasing the 290
data energy and hence the reconstruction quality. We term this 291
extreme as the information regime. However, the overlapping of 292
various regions of the object reduces the contrast in the data and 293
therefore degrades the reconstructed image quality. Therefore, 294
sufficient contrast in the data is required for a good quality 295
image recovery. We name this extreme as the contrast regime. 296
The PSF design requires a trade-off between these two regimes. 297
To explain this concept better, we introduce a relative energy 298
measure R to assess the object information in the detection 299
domain: 300

R =
||Ŝ Âx ||22
|| Âx ||22

. (13)

The quantity R is the ratio of energy in the scrambled data 301
over the limited detector area and the total energy of scrambled 302

data. Since Â contains the optical system information, the loss 303
due to the optical system such as lens imperfection and others 304
cancels out in this parameter. Clearly, R can take values in the 305
interval (0, 1). In traditional imaging systems with single-point 306
impulse response and full detector area, the measure R→ 1. 307
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In the present problem, this measure can also serve the equiva-308
lent role of restricted isometry property (RIP) commonly used309
in compressive sensing literature [27], which is not straight-310
forward to evaluate for a given measurement configuration. In311
general, the number R above increases with the overlap area.312

The second important consideration when designing an313
extended FOV imaging system is the contrast in the recorded314
data. As a given object gets scrambled by MPIR, the relative315
contrast C of the detector pixel values decreases. Since realistic316
detector readouts have a noise floor and bit quantization effects,317
reduction in C leads to undesirable artifacts in the reconstructed318
extended FOV image. We define the image contrast C as319

C =
σ

〈Iout〉
. (14)

Here, σ is the standard deviation, and 〈Iout〉 is the mean of320
pixel values over the detector. An increase in the number of321
impulses in the MPIR essentially increases the correlation in the322
measurements, which manifests itself in the form of a reduced323
value of C . We remark that the design of an extended FOV sys-324
tem with MPIR therefore involves a trade-off between increased325
energy ratio R and reduction in contrast C . In what follows,326
we consider this trade-off regarding the number of impulses in327
MPIR and the spatial extent of impulses.328

1. ReconstructionPerformance as a Function ofNumber329
of Impulseswith FixedSpatial Extent330

We first explore the performance of an extended FOV system331
with the number of impulses. For a given sensor size, the total332

extent of the MPIR is decided based on the desired FOV. In our 333

simulation, for a given spatial extent of MPIR, we have added 334

more impulses uniformly in the internal region as shown by 335

dotted squares in Fig. 3(a). With the number of impulses, the 336

object information from various regions starts overlapping in 337

the detection domain, leading to an increase in the parameter R 338

as shown in Fig. 3(b). The right hand side of Fig. 3(b) represents 339

what we refer to as the information regime where a higher degree 340

of information is available for reconstruction. However, the 341

contrast in the data reduces with the number of impulses as 342

shown in Fig. 3(c). The left side of Fig. 3(c) represents what we 343

refer to as the contrast regime where high contrast in detector data 344

leads to better image reconstruction. We illustrate these points 345

with simulations. 346

We used the Siemens star of size (256× 256) with 25 347

spokes as a test object. The detector size is half the object 348

(128× 128) and was kept constant throughout the simu- 349

lations. Additionally, we made the PSF extent to be larger 350

compared to the detector size, i.e., (191× 191) pixels. 351

Therefore, the reconstructed FOV is of size (318× 318) pixels. 352

In each simulated case, the limited detector data have Poisson 353

noise corresponding to a light level of 105 photons/pixel. 354

Figures 3(a1)–3(a3) show the three MPIRs used with increasing 355

numbers of impulses. We want to emphasize that the num- 356

ber of impulses has been increased inward for a given extent 357

of impulses. It will helps in comparing various cases since the 358

effective FOV is constant in all cases. Figures 3(b1)–3(b3) show 359

the corresponding detector overlap patterns depicting the union
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Fig. 3. Simulation of image reconstruction with varying numbers of impulses in a PSF. (a1)–(a3) MPIR with different impulses increased along the
dotted yellow squares. Spatial variation in recovered information depends on the overlapped area in (b1)–(b3) with an effective FOV represented by
the dotted red square. With the number of impulses, the information content of the reconstructed image increased (c1)–(c3) and therefore the energy
parameter (d1) increases. The contrast parameter (d2) decreases and therefore leads to poor reconstruction quality (c3).
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of detector space corresponding to various impulse positions.360

Finally, Figs. 3(c1) and 3(c2) show the corresponding image361

reconstructions obtained by using the reconstruction algorithm362

described in Section 2. When the number of impulses is low363

(= 17), we note that R is low, but the data have good contrast364

measured by the parameter C . Lower R is seen here to produce365

a reconstruction with artifacts, particularly in the region where366

the overlap is low. At the other extreme is the case where we use367

an MPIR with 68 impulses to increase R . However, the increase368

in R in this case is accompanied by a reduction in C . Practically369

recorded data will always have noise as well as bit quantization370

effects as simulated here. When the contrast C is low, the native371

fluctuations in the recorded intensity pattern can become com-372

parable to noise and bit quantization effects at the detector. The373

reconstruction algorithm finds it difficult to handle these low374

contrast data, and the image quality is again seen to degrade the375

image quality. Therefore, it is reasonable to anticipate that an376

extended FOV computational imaging system will perform at377

its peak somewhere in the middle, as demonstrated for recon-378

struction using MPIR composed of 29 impulses. In fact, our379

simulations show that there is a range of number of impulse380

values for which the reconstructed image quality is seen to be381

comparable and quite good. For reference, the plots of the R and382

C parameters for various MPIRs used are shown in Figs. 3(d1)383

and 3(d2).384

2. ReconstructionPerformance as a Function of Extent 385
of Impulses 386

In the next simulation study, we vary the extent of impulses rela- 387
tive to the detector size and investigate the reconstructed image 388
quality for a fixed number of impulses in the MPIR design. We 389
have fixed the number of 29 impulses in the MPIR for illus- 390
tration. Figures 4(a1)–4(a3) show three cases of MPIR with 391
extent smaller (64× 64), comparable (128× 128), and larger 392
(256× 256) compared to the detector area of (128× 128) 393
pixels, respectively. The blue and red dotted squares show 394
the relative detector size and extended FOV, respectively. 395
Figures 4(b1)–4(b3) show the overlap pattern calculated using 396
the convolution of the active sensor area with the transposed 397
MPIR p(−r). As observed in the restored images in Figs. 4(c1)– 398
4(c3), when the MPIR extent is smaller compared to the 399
detector size, the overlap energy R is high but the extension of 400
FOV is limited. To increase the FOV, if we increase the extent of 401
impulses too much, the reconstructed image quality degrades 402
due to a decrease in energy parameter R . The reconstructed 403
image quality is poor for regions with low values in the overlap 404
pattern. A good quality image reconstruction is obtained here 405
when the extent of impulses is the same as the truncated detector 406
size. The slight decrease in the plot of R for a small extent of 407
impulses [left side of the plot in Fig. 4(d1)] is due to the fact 408
that the extended FOV is not covering the whole object. The 409
contrast parameter C shown in Fig. 4(d2) has an increasing 410
trend with increasing MPIR extent. The minor fluctuations in 411
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(d2) has an increasing trend.
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Table 1. Summary of Quantitative Performance of
Simulated Reconstructions for the Illustrations Shown
in Figs. 3 and 4

Number of
Impulses Extent of Impulses

17 29 68 64 × 64 128 × 128 256 × 256

RMSE 0.27 0.09 0.53 0.67 0.06 0.45
PSNR 19 25 17 8.5 29 15
SSIM 0.86 0.96 0.61 0.68 0.99 0.71

the plot for C in Fig. 4(d2) are a function of the specific choice of412
object function and the arrangement of impulses in the MPIR.413

We note an interesting feature of reconstructions in414
Figs. 3(c1) and 4(c3). In both cases, the reconstructed image415
near the center of the image is smoothed out in the central region416
where the corresponding overlap pattern has low weight. This is417
an artifact of the3 TV based reconstruction. We note that during418
the iteration, as per Eq. (6), when the error is backprojected419
from data space to object space, the region with low weight in420
the overlap pattern receives correspondingly low contribution.421
The TV penalty then causes blurring in this region as the rel-422
ative signal and gradient magnitudes in this region are low. In423
Table 1, we summarize the results in Figs. 3 and 4 by providing424
the numerical values of quantitative image quality measures425
RMSE, PSNR, and SSIM for reconstructed images relative to426
the ground truth object used for simulations.427

B. Sufficient Condition428

If the detector spans the full FOV, i.e., whole scrambled data are429
utilized for the object reconstruction, then R = 1, and we may430
get high-quality object reconstruction [12] by direct Wiener431
filter based de-blurring. If the detector is truncated, then the432
reconstruction problem involves reconstructing an extended433
FOV from “incomplete” measurements. Such a reconstruc-434
tion process needs to be performed via a sparse optimization435
procedure similar to what is explained in Section 3 or its vari-436
ant. The sufficient condition is now therefore related to the437
compressive sensing theory. Nominally the number of mea-438
surements must be at least of the order of 3K log(N/K ) for a439
K -sparse object [28], for enabling an extended FOV system.440
Based on prior literature on compressive imaging, a typical441
pixel number gain in the range of three to five is reasonable to442
expect for the extended FOV imaging system. The simulations443
in Sections 4.A.1 and 4.A.2 suggest a practical trade-off between444
the energy parameter R and contrast parameter C that allows445
one to design the multiple point PSF. In the context of compres-446
sive sensing theory, a similar trade-off between the number of447
measurements and bit quantization of data has been studied in448
[29]. In general, it may be difficult to provide an ideal range of449
numerical values of these parameters, as the answer may depend450
on specifics of the system hardware, the applications at hand,451
and the class of objects under consideration. However, these452
parameters provide a methodology or a thought process that is453
useful for designing an extended FOV system. We have followed454
these guidelines in the experimental work discussed in the next455
section.456

5. EXPERIMENTAL DEMONSTRATION 457

A. System Schematic 458

To validate the proposed extended FOV method, we consid- 459
ered a standard 4F system as shown in Fig. 5. A nearly spatially 460
incoherent illumination is maintained using a 650 nm LED 461
(Holmarc) along with a Köhler illumination technique for even 462
illumination throughout the FOV. The illumination consists 463
of a pair of 10× objectives (model: CFI E Plan Achromat 10×) 464
that acts as a field lens and a collector lens to form an image of 465
an LED filament at the front focal plane of the condenser lens. 466
A 4× objective (model: CFI E Plan Achromat 4×) is used as 467
a condenser lens that projects uniform illumination onto the 468
object. Two convex lenses with focal length f = 200 mm make 469
a 4F system with a reflective SLM device (Holoeye; model: 470
Leto) in the Fourier plane. We have used phase modulation for 471
Fourier plane aperture engineering since phase based design can 472
allow asymmetric distribution of impulses. Practically, most 473
SLM devices are therefore designed to operate in phase-only 474
mode. Amplitude modulation can also be carried out along 475
with phase modulation; however, amplitude modulation will 476
lead to a decrease in the efficiency of diffraction order, which is 477
an important factor in the experiment. A polarizer is placed in 478
front of the SLM with the orientation along the preferred axis 479
of the SLM device. A phase mask corresponding to the MPIR 480
is generated using an inbuilt software of the SLM. A blazed 481
grating [30] is added on the top of the phase mask to improve 482
the diffraction efficiency of modulated light and with a period 483
that can separate zeroth order from the modulated first order. 484
The scrambled data are captured by a CMOS sensor (Lumnera; 485
model: Lt945R, pixel size 3.45 µ). Other essential factors that 486
must be considered in the experimental situation, such as the 487
source’s illumination intensity and the camera’s exposure time. 488
They are adjusted to ensure that the CMOS sensor does not 489
show saturation. 490

The following illustrations use two regions (group 0 elements 491
4–6 and group 1 elements 1–4) of the standard USAF chart 492
(Thorlabs; model:) as4 test objects. In our experiments, we used 493
the MPIR with nine and 41 impulses, to ensure high-contrast 494
data. The image of the test object at the first diffraction order 495
is also captured without employing MPIR to ensure the base- 496
line/or native resolution of the imaging system. We recorded 497
the PSF in Figs. 6(a2) and 7(a2) using a pinhole object such as 498
the PSF image observed in the first-order diffraction. A visual 499
inspection of the PSF showed that the relative intensity of 500
the impulses gradually decreased away from the zeroth order 501
(not shown but located adjacent to the PSF region). We have 502
accounted for this gradual decrease in impulse intensity in the 503
PSF used for reconstruction. For this purpose, the PSF image 504
was first thresholded, and the centroid of each of the regions 505
was computed using the standard binary image processing 506
tools available in the MATLAB image processing toolbox. To 507
determine each impulse’s strength, we computed the mean pixel 508
value in a small circle centered at the centroid location of each 509
of the impulses. The various impulses had relative strengths 510
varying 1.0−0.7. Apart from the relative strength, each impulse 511
is also not an ideal delta function but has a spread due to the 512
diffraction limit of the finite system aperture, which we can 513
account for in the reconstruction algorithm. Therefore, the 514
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Fig. 5. Experimental setup for extended FOV system. A sample is illuminated uniformly using Köhler illumination with a spatially incoherent
LED (650 nm) source. The part of the light modulated by the SLM is reflected by the beam splitter and forms a scrambled image onto the CMOS
sensor.

0 1 2 3 4 5 6

(a1) (a2) (a3) (a4) (a5)
MPIR Overlapped Area Extended FOVScramble dataFirst order

PSF with extent Active Sensor area Reconstructed object FOV

Fig. 6. Extended FOV results. (a1) Image recorded without MPIR coding in first order at native resolution of the system; (a2) MPIR captured
using a pinhole object with nine impulses. The dotted yellow rectangle shows the PSF extent. (a3) Scrambled data captured by a small FOV sensor are
shown in the blue rectangle. (a4) Overlapped area representing the spatial variation of recovered information with the dotted red square representing
the effective FOV increment. (a5) Recovered extended FOV information beyond the blue square.

resolution of reconstructed images is essentially limited by the515

Fourier plane aperture.516

We present two experimental validations of the extended517

FOV system concept in Figs. 6 and 7. Figures 6(a1) and 7(a1)518

show the native images on the camera that were recorded in519

the first order diffraction of the grating without the MPIR520

encoding. These images show the native imaging performance521

of the 4F system. The extended FOV illustrations use MPIRs of522

extent (614× 597) pixels and (771× 771) pixels, with physical523

extent of (2.12 mm× 2.06 mm) and (2.66 mm× 2.66 mm)524

as shown in Figs. 6(a2) and 7(a2), respectively. The number of525

impulses used in the two illustrations are nine and 41, respec- 526

tively. Figures 6(a3) and 7(a3) show the limited detector record 527

over a region of 4.11 mm× 1.89 mm and 3.11 mm× 1.89 mm 528

within blue dotted rectangles, respectively, which was treated as 529

spatially truncated raw data. The overlap patterns for the two 530

cases are shown in Figs. 6(a4) and 7(a4), where the red dotted 531

squares indicate the total extended FOV where we expect to 532

obtain the reconstructed image. The corresponding recon- 533

structions are shown in Figs. 6(a5) and 7(a5) and have physical 534

extents of (6.77 mm× 4.55 mm) and (5.23 mm× 3.94 mm), 535

respectively. We observe that the detector data have contrasts 536
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Fig. 7. Extended FOV results. (a1) Image recorded without MPIR
coding in first order at native resolution of the system; (a2) MPIR
captured using a pinhole object with 41 impulses. The dotted yellow
rectangle shows the PSF extent. (a3) Scrambled data captured by a
small FOV sensor are shown in the blue rectangle. (a4) Overlapped
area representing the spatial variation of recovered information with
the dotted red square representing the effective FOV increment. (a5)
Recovered extended FOV information beyond the blue square. (a6)
Profile plot through the dotted line in first-order image along with
reconstruction for the resolution of the reconstructed image.

of 0.87 and 0.3, respectively, and nearly artifact-free extended537
FOV image reconstructions are possible. The resolution in the538
native image and the reconstructed extended FOV image are539
similar as well, as illustrated by the profile plot in Fig. 7(b). The540
illustrations in Figs. 6 and 7 suggest an extended FOV by a factor541
of approximately 2x in both directions without loss of resolu-542
tion. Our simulations and experiments clearly bring out the543

requirements on balancing the various criteria associated with 544
information gain via overlap and raw data contrast to enable an 545
extended FOV computational imaging system. 546

6. CONCLUSION 547

In conclusion, we have reported an experimental demonstra- 548
tion of an extended FOV computational imaging system. The 549
extended FOV imaging is achieved by a pupil phase mask cor- 550
responding to the MPIR system response. The system can be 551
considered as a conjugate of a SIM concept where the roles of 552
real and Fourier spaces have been exchanged. Unlike SIM, the 553
extended FOV system is, however, capable of a single-shot imag- 554
ing performance. The raw data recorded with such an imaging 555
system consist of native images as well as information from an 556
extended FOV (beyond the sensor boundary) in a scrambled 557
form. The extended FOV image is reconstructed from these 558
scrambled and incomplete data by a sparsity assisted optimiza- 559
tion algorithm. In design of a practical extended FOV system, 560
we find that two system design aspects play an important role. 561
For a given physical extent of the MPIR PSF, increasing the 562
number of impulses leads to information gain within the limited 563
detector area, which improves the image reconstruction. An 564
increase in the number of impulses, however, simultaneously 565
reduces the contrast in the recorded raw data. It may become 566
difficult to differentiate small variations in the raw data in the 567
presence of detector noise and quantization effects. A balance 568
between information gain and contrast reduction is there- 569
fore required for optimal image reconstruction performance. 570
Additionally the local image quality over an extended FOV is 571
dependent on the uniformity in the overlap pattern, which is a 572
union of shifted truncated detector areas as per the transposed 573
MPIR. We illustrate these points with simulations as well as 574
experimental demonstrations that allow a nominal extension 575
of the system FOV by a factor of 2× in both directions beyond 576
the physical sensor boundary. The overall results illustrate an 577
interesting extended FOV computational imaging system that 578
highlights the role of information gain as well as detector pre- 579
cision. Our discussion of the system concept is quite general in 580
nature and may apply to a number of incoherent optical imaging 581
systems used in day-to-day consumer applications as well as 582
scientific research.5 583
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